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Abstract. The rare decay B0 → φφ can occur only via the penguin annihilation topology in the standard
model. We calculate this channel in the perturbative QCD approach. The predicted branching ratio is very
small: around 10−8. We also give the polarization fractions, which show that the transverse polarization
contribution is comparable to the longitudinal one, due to a big transverse contribution from factorizable
diagrams. The small branching ratio in SM makes it sensitive to any new physics contributions.

1 Introduction

The study of B meson decays has proven to be a good place
to test the standard model (SM) and to give some impor-
tant constraints on the SM parameters. Recently, more
attention has been paid to the B → V V decay modes. The
transverse polarization of the vector meson can contribute
to the decay width, and the fraction of each kind of po-
larization has been or will be measured. In some penguin
dominated decay modes, such as B → φK∗ [1], the experi-
mental results for polarization differ from most theoretical
predictions [2], which have been considered as a puzzle and
there has been much discussion [3, 4]. So the polarization
problem in the B → V V decay modes brings a new chal-
lenge to the standard model; maybe it is a signal of new
physics [4, 5].

In thisworkwewill calculate the branching ratio and the
polarization fractions of the charmless decay channel B0 →
φφ with the perturbative QCD approach (PQCD) [6, 7].
In this channel, the initial b̄ quark and the light valence
d quark in the B meson do not appear in the final states,
so we must have the annihilation topology in Feynman
diagrams. Annihilation diagrams cannot be calculated in
the factorization approach [8, 9] or in the QCD improved
factorization approach [10] for its endpoint singularity, but
in the PQCD approach this singularity can be regulated by
a Sudakov form factor and threshold resummation, so the
PQCD calculations can give converging results and have
predictive power. In this channel, since no tree level op-
erators can contribute, the dominant contribution comes
from penguin operators. The annihilation topology is usu-
ally suppressed relative to the emission topology which can
appear in other modes, so this channel is a rare decay mode
and has not been measured in the B factories.
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In the next section we give our theoretical formulae
based on the PQCD framework. Then we show the numer-
ical results and a brief conclusion in the third section.

2 Perturbative calculation

For simplicity, we work in the B meson rest frame and
adopt the light-cone coordinate system. Then the four-
momentum of the B meson and the two φ mesons in the
final state can be written as

P1 =
MB√

2
(1, 1,0T) ,

P2 =
MB√

2
(1 − r, r,0T) ,

P3 =
MB√

2
(r, 1 − r,0T) , (1)

in which r is defined by r = 1
2

(
1 −

√
1 − 4M2

φ/M2
B

)
�

M2
φ/M2

B � 1. To extract the helicity amplitudes, we should
parameterize the polarization vectors. The longitudinal po-
larization vectormust satisfy the orthogonality andnormal-
ization: ε2L · P2 = 0, ε3L · P3 = 0, and ε2L

2 = ε3L
2 = −1.

Then we can give the manifest form as follows:

ε2L =
1√
2r

(1 − r, −r,0T) ,

ε3L =
1√
2r

(−r, 1 − r,0T) . (2)

As to the transverse polarization vectors, we can choose
the simple form:

ε2T =
1√
2

(0, 0,1T) ,
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ε3T =
1√
2

(0, 0,1T) . (3)

Only penguin operators can contribute to this decay
channel, so the relevant effective weak Hamiltonian can be
written as [11]

Heff =
GF√

2
VtbV

∗
tdCi(µ)Oi(µ), i = 3– 10, (4)

where Ci are the QCD corrected Wilson coefficients, and
Oi are the usual penguin operators with the form

O3 = (s̄ibi)V −A

∑
q

(q̄jqj)V −A ,

O4 = (s̄ibj)V −A

∑
q

(q̄jqi)V −A ,

O5 = (s̄ibi)V −A

∑
q

(q̄jqj)V +A ,

O6 = (s̄ibj)V −A

∑
q

(q̄jqi)V −A ,

O7 =
3
2

(s̄ibi)V −A

∑
q

eq (q̄jqj)V +A ,

O8 =
3
2

(s̄ibj)V −A

∑
q

eq (q̄jqi)V +A ,

O9 =
3
2

(s̄ibi)V −A

∑
q

eq (q̄jqj)V −A ,

O10 =
3
2

(s̄ibj)V −A

∑
q

eq (q̄jqi)V −A , (5)

where q = s. The first four operators are QCD penguin
operators, while the last four ones are electroweak pen-
guin operators, which should be suppressed by the cou-
pling α/αs.

The decay width for this channel is

Γ =
1
2

G2
F|Pc|

16πM2
B

|V ∗
tbVtd|2

∑
σ=L,T

Mσ†Mσ, (6)

where P c is the three-momentum of the final state me-
son, with |P c| = MB

2 (1 − 2r). Note that for our case an
additional factor 1/2 should appear for the permutation
symmetry of the identical final state particles. The decay
amplitude Mσ which is decided by QCD dynamics will be
calculated later in the PQCD approach. The subscript σ de-
notes the helicity states of the two vector mesons with L(T)
standing for the longitudinal (transverse) components. Af-
ter analyzing the Lorentz structure, the amplitude can be
decomposed into [1]

Mσ = M2
BML + M2

BMNε∗
2(σ = T) · ε∗

3(σ = T)

+iMTεµνρσεµ∗
2 εν∗

3 P ρ
2 Pσ

3 . (7)

We can define the longitudinal H0, and the transverse H±
helicity amplitudes as

H0 = M2
BML, H± = M2

BMN ∓ M2
φ

√
r′2 − 1MT, (8)

where r′ = (P2 ·P3)/M2
φ. After the helicity summation, we

can deduce that they satisfy the relation∑
σ=L,R

Mσ†Mσ = |H0|2 + |H+|2 + |H−|2. (9)

There is another equivalent set of definitions of helic-
ity amplitudes:

A0 = −ξM2
BML,

A‖ = ξ
√

2M2
BMN,

A⊥ = ξM2
φ

√
r′2 − 1MT, (10)

with ξ the normalization factor satisfying

|A0|2 + |A‖|2 + |A⊥|2 = 1, (11)

where the notations A0, A‖, A⊥ denote the longitudinal,
parallel, and perpendicular polarization amplitude.

What follows is a calculation of the matrix elements
ML, MN and MT of various operators in the weak Hamil-
tonian with PQCD approach. In the PQCD approach, the
decay amplitude is factorized into the convolution of the
mesons’ light-cone wave functions, the hard scattering ker-
nel and the Wilson coefficients, which stands for the soft,
hard and harder dynamics, respectively. The transverse
momentum was introduced so that the endpoint singular-
ity which will break the collinear factorization is regulated
and the large double logarithm term appears after the
integration on the transverse momentum, which is then
resummed into the Sudakov form factor. The formalism
can be written as

M ∼
∫

dx1dx2dx3b1db1b2db2b3db3

×Tr
[
C(t)ΦB(x1, b1)Φφ(x2, b2)Φφ(x3, b3)

×H(xi, bi, t)St(xi)e−S(t)], (12)

where bi is the conjugate space coordinate of the transverse
momentum, which represents the transverse interval of the
meson. t is the largest energy scale in the hard function H,
while the jet function St(xi) comes from the summation
of the double logarithms ln2 xi, called a threshold resum-
mation [12], which becomes large near the endpoint.

The light-cone wave functions of mesons are not calcu-
lable in principle in PQCD, but they are universal for all
the decay channels. Thus they can be constrained from the
measured other decay channels, like B → Kπ and B → ππ
decays etc. [7]. For the heavy B meson, we have

1√
2Nc

(�P1 + MB)γ5φB(x, b). (13)
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Fig. 1a–d. Leading order Feynman diagrams for B0 → φφ

For the longitudinal polarized φ meson,

1√
2Nc

[
Mφ �ε2Lφφ(x)+ �ε2L �P2φ

t
φ(x) + MφIφs

φ(x)
]
,

(14)

and for transverse polarized φ meson,

1√
2Nc

[
Mφ �ε2Tφv

φ(x)+ �ε2T �P2φ
T
φ (x)

+
Mφ

P2 · n−
iεµνρσγ5γ

µεν
2TP ρ

2 nσ
−φa

φ(x)
]
. (15)

In the following, we omit the subscript of the φ meson
for simplicity.

Now the only thing left is the hard part H. In the
PQCD approach, it contains the corresponding four quark
operator and the hard gluon connecting the quark pair
from the sea. They altogether make an effective six quark
interaction. The hard part H is channel dependent, but
it is perturbatively calculable. When calculating the hard
parts (shown in the Fig. 1), the factorizable diagrams (a)
and (b) have strong cancellation effects, which results in a
null longitudinal polarization contribution and null paral-
lel polarization contribution. The perpendicular polariza-
tion survives with a large factorizable contribution, which
will be shown later to make a large transverse polariza-
tion. The detailed formulas with polarization ML, MN,
and MT for each diagram are given in the appendix. Ac-
cording to PQCD power counting rules, the longitudinal
non-factorizable diagram should give the leading contribu-
tion, and the contributions from the other diagrams are
suppressed by a factor r.

3 Numerical results and summary

For the B meson wave function distribution amplitude in
(13), we employ the model [7]

φB(x)=NBx2(1 − x)2 exp

[
− 1

2

(
xMB

ωB

)2

− ω2
Bb2

2

]
, (16)

where the shape parameter ωB = 0.4 GeV has been con-
strained in other decay modes. The normalization con-
stant NB = 91.784 GeV is related to the B decay constant
fB = 0.19 GeV. It is one of the two leading twist B me-
son wave functions; the other one is power suppressed,
so we omit its contribution in the leading power analy-
sis [13]. The φ meson distribution amplitude up to twist-3
are given by [14]

φφ(x) =
3fφ√
2Nc

x(1 − x), (17)

φt
φ(x) =

fT
φ

2
√

2Nc

×
{

3(1 − 2x)2 + 1.68C
1
2
4 (1 − 2x)

+0.69
[
1 + (1 − 2x) ln

x

1 − x

]}
, (18)

φs
φ(x) =

fT
φ

4
√

2Nc

×
[
3(1 − 2x)

(
4.5 − 11.2x + 11.2x2)

+1.38 ln
x

1 − x

]
, (19)

φT
φ (x) =

3fT
φ

2
√

2Nc

x(1 − x)
[
1 + 0.2C

3
2
4 (1 − 2x)

]
, (20)

φv
φ(x) =

fT
φ

2
√

2Nc

×
{

3
4

[
1 + (1 − 2x)2

]
+ 0.24

[
3(1 − 2x)2 − 1

]

+0.96C
1
2
4 (1 − 2x)

}
, (21)

φa
φ(x) =

3fT
φ

4
√

2Nc

(1 − 2x)

× [
1 + 0.93(10x2 − 10x + 1)

]
, (22)

with the Gegenbauer polynomials

C
1
2
2 (ξ) =

1
2

(
3ξ2 − 1

)
, (23)

C
1
2
4 (ξ) =

1
8

(
35ξ4 − 30ξ2 + 3

)
, (24)

C
3
2
2 (ξ) =

3
2

(
5ξ2 − 1

)
. (25)
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We employ the following constants [15]: the Fermi
coupling constant GF = 1.16639 × 10−5 GeV−2, the CKM
matrix element |V ∗

tbVtd| = 0.0084, the meson masses MB =
5.28 GeV, Mφ = 1.02 GeV, the decay constants fφ =
0.237 GeV, fT

φ = 0.22 GeV and the B meson lifetime τB0 =
1.55 ps. The results for the center value of the branching
ratio is then

Br
(
B0 → φφ

)
= 1.89 × 10−8, (26)

and the helicity amplitudes are given by

R0 = 0.65, R‖ = 0.02, R⊥ = 0.33, (27)

which shows that the transverse polarization contribu-
tion is comparable to the longitudinal one. The relative
strong phases φ‖ = arg (−A‖/A0), φ⊥ = arg (−A⊥/A0)
are given by

φ‖ = 198.34◦, φ⊥ = 195.48◦. (28)

Now we consider the contribution from different opera-
tors. In the factorizable diagrams, ML = MN = 0, because
of the cancellation between the diagrams of Fig. 1a,b. For
MT, the QCD penguin operators O3, O4, O5 and O6,
contribute at the same level. In the non-factorizable dia-
grams, the operator O6 gives the most important contri-
butions. If we omit the contribution from the electroweak
penguin operators, the variation of the contribution from
non-factorizable diagrams (Fig. 1c,d) is small, while that of
the factorizable diagrams (Fig. 1a,b) is large. The reason
is that the electroweak penguin operator O9, which has
a large Wilson coefficient, only is present in the factoriz-
able diagrams. The overall contribution of the electroweak
penguin at the branching ratio level is less than 30%. We
also test the contribution without twist-3 wave functions.
We find that if we keep only twist-2 wave functions, the
total branching ratio does not change much, but the con-
tribution from the factorizable diagrams will vanish, and
the transverse polarization contribution then becomes very
small. So the twist-3 wave functions give very important
corrections to the polarization fractions.

There are many theoretical uncertainties in the calcu-
lation. The next to leading order corrections to the hard
part is a very important kind of uncertainty for penguin
dominant decays. To test it, we consider the hard scale at
the range

max
(

0.75MBDa,
1
b2

,
1
b3

)
< ta

< max
(

1.25MBDa,
1
b2

,
1
b3

)
, (29)

max
(

0.75MBDb,
1
b2

,
1
b3

)
< tb

< max
(

1.25MBDb,
1
b2

,
1
b3

)
, (30)

max
(

0.75MBF, 0.75MBDc,
1
b1

,
1
b3

)
< tc

< max
(

1.25MBF, 1.25MBDc,
1
b1

,
1
b3

)
, (31)

max
(

0.75MBF, 0.75MB |X| 1
2 ,

1
b1

,
1
b3

)
< td

< max
(

1.25MBF, 1.25MB |X| 1
2 ,

1
b1

,
1
b3

)
, (32)

and the other parameters are fixed. Then we can obtain
the value of the branching ratio ranging in

Br
(
B0 → φφ

)
=

(
1.89+0.61

−0.21

) × 10−8, (33)

which is sensitive to the change of t, so the next to lead-
ing order corrections will give an important contribution.
The ratios |A0|2, |R‖|2 and |R⊥|2 are also very sensitive to
the variation of t, because the non-factorized contributions
decrease with increasing t, but the factorizable diagrams,
which give the main contribution of the transverse po-
larization, increase. The variation range of |A0|2 is about
0.41–0.81.

Another uncertainty is from the meson wave functions,
which is governed by other measured decays [7]. The varia-
tion of the parameters will also give corrections, such as the
parameter ωb in the B wave function; if we assume that its
value range is 0.32–0.48, we can give the branching ratio:

Br
(
B0 → φφ

)
=

(
1.89+0.28

−0.26

) × 10−8. (34)

The ratios R0, R‖, R⊥ are not very sensitive to the change of
ωb, because it only gives an overall change of the branching
ratio, not to the individual polarization amplitudes.

In this paper, we calculate the rare decay channel B0 →
φφ in the PQCD approach and give its branching ratio
and polarization fractions in the SM. This decay occurs
purely via the annihilation topology, and only penguin
operators can contribute. We predict that it has a very
small branching ratio, 10−8. This is so small that it will be
sensitive to new physics, such as supersymmetry etc. [4,
16], which may give a larger branching ratio. The current
experiments only give the upper limit: Br(B0 → φφ) <
1.5 × 10−6 [17], so more accurate experimental results are
needed to test the theory.
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10475085 and 10135060, Y-L. Shen and J. Zhu thank Y. Li, and
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Appendix A: Factorization formulas

In the factorizable diagrams, due to the identical particles
at the final states, cancellation occurs between the two
diagrams of Fig. 1a,b. Only the perpendicular polarization
part survives,
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Ma
T = −16πCF fBM2

B

×
∫ 1

0
dx2dx3

∫ ∞

0
b2db2

∫ ∞

0
b3db3rαs(t)

× [φv(x2)φv(x3)(x3 − 1) + φv(x2)φa(x3)(1 + x3)

+ φa(x2)φv(x3)(1 + x3) + φa(x2)φa(x3)(x3 − 1)]

×Sφ(t)2
[
C3 +

C4

3
− C5 − C6

3
+

1
2

(
C7 +

C8

3

)

− 1
2

(
C9 +

C10

3

)]
(t)h(x2, x3, b2, b3), (A.1)

Mb
T = 16πCF fBM2

B

×
∫ 1

0
dx2dx3

∫ ∞

0
b2db2

∫ ∞

0
b3db3rαs(t)

×[φv(x2)φv(x3)(x2) + φv(x2)φa(x3)(2 − x2)

+φa(x2)φv(x3)(2 − x2) + φa(x2)φa(x3)(x2)]

×Sφ(t)2
[
C3 +

C4

3
− C5 − C6

3
+

1
2

(
C7 +

C8

3

)

− 1
2

(
C9 +

C10

3

)]
(t)h′(x2x3, b2, b3), (A.2)

where the h functions come from the integral on the trans-
verse momentum, and their manifest form is

h(x2, x3, b2, b3)

=
(

iπ
2

)2

H1
0 (MBFb2)St(x3)

×[θ(b3 − b2)J0(b2MBDa)H1
0 (b3MBDa)

+θ(b2 − b3)J0(b3MBDa)H1
0 (b2MBDa)], (A.3)

h′(x2, x3, b2, b3)

=
(

iπ
2

)2

H1
0 (MBFb3)St(x3)

×[θ(b3 − b2)J0(b2MBDb)H1
0 (b3MBDb)

+θ(b2 − b3)J0(b3MBDb)H1
0 (b2MBDb)], (A.4)

with the notation F and D standing for

F =
√

[(1 − x2)(1 − r) + x3r][x3(1 − r) + (1 − x2r)],

Da =
√

[x3 + r(1 − x3)][1 − r(1 − x3)],

Db =
√

[1 − x2 + rx2](1 − rx2). (A.5)

t is the hard scale, which is chosen as

ta = max(MBDa, 1/b2, 1/b3),

tb = max(MBDb, 1/b2, 1/b3). (A.6)

The Sudakov form factor is written as

Sφ(t) = exp

[
−s(x2P

+
2 , b2) − s((1 − x2)P+

2 , b2)

− 2
∫ t

1/b2

dµ̄

µ̄
γ

(
αs

(
µ̄2))] , (A.7)

with the quark anomalous dimension γ = −αs/π and
s(Q, b), the so-called Sudakov factor, which comes from
the resummation of the double logarithms, is given as

s(Q, b)

=
∫ Q

1/b

dµ′

µ′

[{
2
3

(2γE − 1 − log 2) + CF log
Q

µ′

}
αs(µ′)

π

+
{

67
9

− π2

3
− 10

27
nf +

2
3

β0 log
γE

2

} (
αs(µ′)

π

)2

× log
Q

µ′

]
. (A.8)

The non-factorizable amplitudes for the diagrams in
Fig. 1c,d are written as

M c
L = − 32πCF M2

B√
6

×
∫

[dx]
∫ ∞

0
b1db1b3db3φB(x1)

×{[−1 + x2 + r(2 − 4x2)]

×φ(x2)φ(x3) + r(1 + x2 − x3)φt(x2)φt(x3)

+r(−1 + x2 + x3)φt(x2)φs(x3)

+r(1 − x2 − x3)φs(x2)φt(x3)

+r(3 − x2 + x3)φs(x2)φs(x3)}αs(t)

×[C4 + C6 − C8/2 − C10/2]

×hn(x1, x2, x3, b1, b3)S(t), (A.9)

Md
L = − 32πCF M2

B√
6

×
∫ 1

0
[dx]

∫ ∞

0
b1db1b3db3φB(x1)

×{[x3 − 4x3r]φ(x2)φ(x3)

+r(1 − x2 + x3)φt(x2)φt(x3)

−r(1 − x2 − x3)φt(x2)φs(x3)

+r(1 − x2 − x3)φs(x2)φt(x3)

+r(−1 + x2 − x3)φs(x2)φs(x3)}αs(t) (A.10)

×[C4 + C6 − C8/2 − C10/2](t)

×h′
n(x1, x2, x3, b1, b3)S(t),
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Mc
N = − 32πCF M2

B√
6

×
∫

[dx]
∫ ∞

0
b1db1b3db3φB(x1)r

×[−2φv(x2)φv(x3) + φT(x2)φT(x3)(1 + x2 − x3)

−2φa(x2)φa(x3)]αs(t)

× [C4 + C6 − C8/2 − C10/2] (t)

×hn(x1, x2, x3, b1, b3)S(t), (A.11)

Md
N = − 32πCF M2

B√
6

×
∫

[dx]
∫ ∞

0
b1db1b3db3φB(x1)r

×φT(x2)φT(x3)(1 − x2 + x3)αs(t)

×[C4 + C6 − C8/2 − C10/2](t)

×h′
n(x1, x2, x3, b1, b3)S(t), (A.12)

Mc
T =

64πCF M2
B√

6

×
∫

[dx]
∫ ∞

0
b1db1b3db3φB(x1)r[2φv(x2)φa(x3)

+φT(x2)φT(x3)(1 − x2 − x3) + 2φa(x2)φv(x3)]

×αs(t)[C4 − C6 + C8/2 − C10/2](t) (A.13)

×hn(x1, x2, x3, b1, b3)S(t),

Md
T = − 64πCF M2

B√
6

×
∫

[dx]
∫ ∞

0
b1db1b3db3φB(x1)r

×φT(x2)φT(x3)(1 − x2 − x3)

×αs(t)[C4 − C6 + C8/2 − C10/2](t)

×h′
n(x1, x2, x3, b1, b3)S(t). (A.14)

The h functions are defined as

hn(x1, x2, x3, b1, b3)

=
iπ
2

[
θ(b3 − b1)J0(b1MBF )H1

0 (b3MBF ) (A.15)

+ θ(b1 − b3)J0(b3MBF )H1
0 (b1MBF )

]
K0(MBDcb1),

h′
n(x1, x2, x3, b1, b3)

=
iπ
2

[
θ(b3 − b1)J0(b1MBF )H1

0 (b3MBF )

+θ(b1 − b3) J0(b3MBF )H1
0 (b1MBF )

]

×



iπ
2 H

(1)
0

(√−Xb1
)
, X < 0,

K0
(√

Xb1
)
, X > 0,

(A.16)

with the notation∫
[dx] =

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3, (A.17)

Dc = (1 − [x2 − x1 + r(1 − x2 − x3)]

× [1 − x3 − r(1 − x2 − x3)])1/2, (A.18)

X = [x2 + x1 − 1 + r(1 − x2 − x3)]

× [x3 + r(1 − x2 − x3)], (A.19)

and the hard scale t is

tc = max(MBF, MBDc, 1/b1, 1/b3), (A.20)

td = max
(
MBF, MB

√
|X|, 1/b1, 1/b3

)
. (A.21)

The Sudakov form factor is S(t) = SB(t)S2
φ(t), with

SB(t) = s(x1P
+
1 , b1) + 2

∫ t

1/b1

dµ̄

µ̄
γ

(
αs

(
µ̄2)) . (A.22)
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